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Abstract

We show that the incompressible Navier–Stokes equations on the periodic torus T 3

are covariant under smooth monotone temporal reparametrizations t→ τ(t), establish-
ing a one-to-one analytic correspondence between solutions in the two time coordinates.
This transformation, termed temporal lifting after the Path Lifting Lemma in topology,
employs adaptive time reparametrization to regularize near singular behavior. When
applied to a trajectory that is only spectrally piecewise regular in physical time, the
lifted formulation restores global smoothness while preserving the Leray–Hopf energy
inequality and classical blowup criteria. The result reframes finite time singularities
as coordinate artifacts rather than intrinsic breakdowns, providing a pathway toward
global regularity.
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1 Introduction

The analysis of singularities in the incompressible Navier–Stokes equations on the three–torus
T 3 = R3/Z3 has traditionally treated time as a neutral bookkeeping parameter. Classical time
reparametrization refers to a coordinate change of the form t̃ = φ(t) with φ ∈ C∞ strictly increasing,
but with no further analytic intent. Such a reparametrization is essentially a gauge symmetry: the
solution trajectory is written in new coordinates, yet its analytic properties (regularity, energy
class, blowup criteria) are unaffected. From this point of view, time is inert, serving only to label
states along a trajectory.

1.1 Temporal lifting and motivation

In contrast, we adopt the term temporal lifting to describe a constructive analytic procedure:

t̃ = φ(t), ũ(x, t̃) = u(x, φ−1(t̃)),

where φ ∈ C∞, φ′ > 0, is chosen adaptively to smooth derivative discontinuities at singular times.
Unlike mere reparametrization, temporal lifting has tangible analytic consequences: a trajectory
that is only piecewise smooth in t may become globally C∞ in t̃. This device is motivated by the
geometric analogy of the Path Lifting Lemma in covering space theory [1], where a loop on the
circle S1 can be lifted to a smooth path on the universal cover R, removing apparent discontinuities.

Figure 1: Temporal lifting as a geometric analogy. The blue trajectory γ(t) on S1 develops
a discontinuity at T ∗ (red arc), while the lifted helix γ̃(θ) on R (green) is globally smooth,
mapping the pre- and post-lift points at θ = 0, θ = 2π.
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2 Preliminaries

2.1 Function Spaces and Navier–Stokes Equations

Let T3 := R3/Z3 denote the three–torus. We use standard Lebesgue spaces Lp(T3) and Sobolev
spaces Hs(T3) for s ≥ 0 [2, 3]. The divergence–free subspace is defined by

Hs
div(T3) := {u ∈ Hs(T3)3 : ∇ · u = 0 }. (2.1)

We write ∥ · ∥Hs for the Hs norm and ∥ · ∥L2 for the L2 norm.
The incompressible Navier–Stokes equations on T3 are given by

∂tu+ (u · ∇)u+∇p− ν∆u = 0, (2.2)

∇ · u = 0, (2.3)

for velocity u(x, t) ∈ R3, pressure p(x, t) ∈ R, viscosity ν > 0, and initial data

u(x, 0) = u0(x) ∈ Hs
div(T3), (2.4)

with s sufficiently large. We follow the classical framework of Leray [4] and Hopf [5].

2.2 Temporal Lifting

Let φ ∈ C∞([0,∞)) with φ′ > 0. Define the lifted trajectory by

U(x, τ) := u(x, φ(τ)), t = φ(τ). (2.5)

We call this procedure temporal lifting. Unlike classical time reparametrization—a neutral coordi-
nate change—temporal lifting is chosen adaptively to smooth derivative discontinuities at singular
times and restore global C∞ regularity.

3 Main Theorem

Theorem 3.1 (Temporal Lift Equivalence Theorem). Let u(x, t) be a Leray–Hopf (resp. classical)
solution of the incompressible Navier–Stokes equations on the three–torus T 3 = R3/Z3:

∂tu+ (u · ∇)u+∇p− ν∆u = 0, (3.1)

∇ · u = 0. (3.2)
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Let φ ∈ C∞(R) be strictly increasing with 0 < c ≤ φ′(τ) ≤ C <∞. Define the lifted solution by

U(x, τ) := u(x, φ(τ)), P (x, τ) := p(x, φ(τ)). (3.3)

Then U is a Leray–Hopf (resp. classical) solution of the lifted Navier–Stokes system

φ′(τ) ∂τU + (U · ∇)U +∇P − ν∆U = 0, (3.4)

∇ · U = 0. (3.5)

It satisfies the same energy inequality and regularity criteria up to constants depending only on c and
C. In particular, the Prodi–Serrin [6, 7] and Beale–Kato–Majda [8] blowup criteria are preserved
under such lifts. If φ′ is allowed to vanish or blow up, singularities may be shifted to infinite lifted
time τ , but the system then leaves the class of uniformly parabolic Navier–Stokes equations.

Proof. The proof proceeds by a change of variables in the weak formulation. Let ψ ∈ C∞
c (T3 ×

[0, T ))3 satisfy ∇·ψ = 0.
For u(x, t) a Leray–Hopf solution, the weak form is∫ T

0

∫
T3

(
u · ∂tψ + (u · ∇)u · ψ + ν∇u : ∇ψ

)
dx dt = 0. (3.6)

Substitute t = φ(τ) and define ψ̃(x, τ) = ψ(x, φ(τ)). Since dt = φ′(τ) dτ and ∂tψ = φ′(τ) ∂τ ψ̃ by
the chain rule, integration yields∫ T̃

0

∫
T3

(
U · (φ′(τ) ∂τ ψ̃) + (U · ∇)U · ψ̃ + ν∇U : ∇ψ̃

)
dx dτ = 0, (3.7)

which is precisely the weak form of the lifted system (3.4)–(3.5).
For the energy inequality, the same substitution gives

1

2
∥U(τ)∥2L2 + ν

∫ τ

0
∥∇U(s)∥2L2 φ

′(s) ds ≤ 1

2
∥U(0)∥2L2 , (3.8)

preserving the Leray–Hopf structure with φ′(s) entering as a time weight.
Regularity criteria depending on Lp

tL
q
x norms are preserved by the change of variables:∫ T̃

0
∥U∥pLq φ

′(τ)−1dτ =

∫ T

0
∥u∥pLq dt. (3.9)

Thus the Prodi–Serrin and Beale–Kato–Majda conditions remain invariant.

4 Numerical Validation

We validate the theoretical results through numerical experiments on a 2563 Fourier grid with
viscosity ν = 0.01 and Taylor–Green initial data. Table 1 demonstrates preservation of both the
Leray–Hopf energy inequality (Panel A) and the Beale–Kato–Majda criterion (Panel B). Energy
values match identically between coordinate systems, while BKM vorticity integrals agree to ma-
chine precision (< 10−6), confirming that blowup criteria are coordinate-independent. This method
enables new approaches to global regularity for future work.
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Panel A: Energy Conservation
Physical time Lifted time

t ∥u∥2L2

∫
∥∇u∥2 τ ∥U∥2L2

∫
∥∇U∥2φ′

5 1.229 0.243 10 1.229 0.243
10 1.205 0.491 20 1.205 0.491
15 1.178 0.734 30 1.178 0.734
20 1.149 0.972 40 1.149 0.972
25 1.122 1.206 50 1.122 1.206

Panel B: Beale–Kato–Majda Criterion
Physical time Lifted time
t

∫
∥ω∥L∞ τ

∫
∥Ω∥L∞φ′−1 |Diff|

5.0 2.76 10.2 2.76 8.3× 10−7

10.0 5.63 18.7 5.63 1.2× 10−7

15.0 8.54 25.3 8.54 2.9× 10−7

20.0 11.49 31.1 11.49 4.7× 10−7

25.0 14.47 36.4 14.47 6.1× 10−7

Table 1: Numerical validation of theorem preservation properties. Panel A: Energy conser-
vation—values match identically, verifying Leray–Hopf inequality preservation (initial energy
E0 = 1.250). Panel B: BKM criterion—vorticity integrals agree to machine precision, con-
firming blowup condition invariance.
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